授業ブログ

授業ブログClass Blog

10月02日(高2) の授業内容です。今日は数学Ⅲ・微分法の応用』の“関数の最大・最小”、“グラフの凹凸と第2次導関数”、“関数のグラフを描く手順”、“第2次導関数を用いた極値判定”を中心に進めました。

 今日のポイントです。
  ① 関数の最大最小は
       「極値と端点の値の大小を考察」
  ② 関数の凹凸は、
      第2次導関数の符号の変化で調べる
  ③ 関数のグラフを描く手順
    (ア)定義域チェック
    (イ)対称性チェック
    (ウ)微分
    (エ)増減(凹凸)表
    (オ)極限計算(漸近線も含む)
    (カ)切片の値
以上です。
今日の最初は「関数の最大最小」。
必ずしも“極大値=最大値”とはなりません。グ
ラフを描いてみると容易に分かりますが、端点
の値との大小関係で決まります。
次に「グラフの凹凸」。これは第2次導関数の
“符号変化”で凹凸表をかきます。
そして最後は「関数のグラフを描く手順」。数学
Ⅱに比較すると、ステップがかなり増えます。
“グラフを描く作業”は今までの学習内容の集大
成になっています。つまりグラフを描くと今まで
の復習ができるということです!
一石二鳥ですね(笑)。
さて今日もお疲れさまでした。グラフの問題は手
ごわいですが、ひとつずつ丁寧に丁寧に確認して
いきましょう。がんばってください。
質問があれば直接またはLINEでどうぞ!